K3 surfaces of Picard rank one which are double covers of the projective plane
نویسنده
چکیده
Andreas-Stephan ELSENHANS a and Jörg JAHNEL a a Universität Göttingen, Mathematisches Institut, Bunsenstraße 3–5, D-37073 Göttingen, Germany 1 Abstract. We construct explicit examples of K3 surfaces over Q which are of degree 2 and the geometric Picard rank of which is equal to 1. We construct, particularly, examples in the form w2 = det M where M is a symmetric (3× 3)-matrix of ternary quadratic forms or a symmetric (6× 6)-matrix of ternary linear forms. Our method is based on reduction modulo p for p = 3 and 5.
منابع مشابه
On Automorphisms Group of Some K3 Surfaces
In this paper we study the automorphisms group of some K3 surfaces which are double covers of the projective plane ramified over a smooth sextic plane curve. More precisely, we study some particlar case of a K3 surface of Picard rank two. Introduction K3 surfaces which are double covers of the plane ramified over a plane sextic are classical objects. In this paper we determine the automorphisms...
متن کاملK3 Surfaces of Picard Rank One and Degree Two
Examples 1. A K3 surface of degree two is a double cover of P, ramified in a smooth sextic. K3 surfaces of degree four are smooth quartics in P. A K3 surface of degree six is a smooth complete intersection of a quadric and a cubic in P. And, finally, K3 surfaces of degree eight are smooth complete intersections of three quadrics in P. The Picard group of a K3 surface is isomorphic to Zn where n...
متن کاملOn the Automorphisms of Some K3 Surface Double Cover of the Plane Federica Galluzzi and Giuseppe Lombardo
In this paper we study the automorphisms group of some K3 surfaces which are double covers of the projective plane ramified over a smooth sextic plane curve. More precisely, we study the case of a K3 surface of Picard rank two such that there is a rational curve of degree d which is tangent to the sextic in d points. Introduction K3 surfaces which are double covers of the plane ramified over a ...
متن کاملSurfaces via Almost - Primes
Based on the result on derived categories on K3 surfaces due to Mukai and Orlov and the result concerning almost-prime numbers due to Iwaniec, we remark the following facts: (1) For any given positive integer N , there are N (mutually non-isomorphic) projective complex K3 surfaces such that their Picard groups are not isomorphic but their transcendental lattices are Hodge isometric, or equivale...
متن کاملProjective Models of K3 Surfaces with an Even Set
The aim of this paper is to describe algebraic K3 surfaces with an even set of rational curves or of nodes. Their minimal possible Picard number is nine. We completely classify these K3 surfaces and after a careful analysis of the divisors contained in the Picard lattice we study their projective models, giving necessary and sufficient conditions to have an even set. Moreover we investigate the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007